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In previous papers about statistical properties of composite materials, assumptions have been 
made about both the statistical and mechanical properties of the component fibres and matrix, 
and these have been used to calculate properties of the composite. The results are sensitive to 
the assumed stress concentration factors and length of stress overload region, and there 
remains considerable interest in characterizing them. In this paper, it is shown how experi- 
mental data on the fibres and composites may be used to make inferences about these proper- 
ties of the material. The statistical technique employed is numerical maximum likelihood, but 
this involves detailed combinatorial calculations and is therefore highly computationally inten- 
sive. The method is illustrated using experimental data on hybrid composites consisting of 
carbon fibre tows embedded in glass-epoxy composite, particular emphasis being placed on 
the consequences of varying the distance between the carbon fibre tows. 

1. I n t r o d u c t i o n  
Theories regarding the behaviour of a collection of 
fibres of equal length held in parallel originated with 
Daniels in 1945 [1]. His model assumed that, if some 
fibres fail, the load is redistributed equally over all 
surviving fibres. In recent years, models involving 
local load sharing and the chain of bundles model 
have been extensively studied, some relevant references 
being Harlow and Phoenix [2-5], Manders and Bader 
[6, 7], Batdorf [8], Bader and Priest [9] and Smith et al. 
[l 0]. In all these papers assumptions of two types have 
been involved. First, individual fibres are assumed to 
have random strength, the strength distribution most 
frequently being taken,to be of Weibull form. Secondly, 
assumptions are made about the stress concentrations 
that surround individual fibre failures. These assump- 
tions are particularly critical in the case of hybrid 
composites, as recent analyses by Bader and co-workers 
[11, 12] have shown. Whereas the Weibull distribution 
for individual fibre strength may be inferred from tests 
on single fibres, there is no direct method to measure 
the stress concentration factors. 

The motivation behind the present paper is that if 
detailed data are available concerning the positions 
and failure stresses of  individual breaks in the com- 
posite, then much can be learned about the stress 
concentrations. This is based on a new method of 
statistical analysis which, in contrast to earlier stat- 
istical methods which were mainly concerned with 
estimating the Weibull distribution, attempts to model 
the whole process of the appearance of flaws in the 
material. The statistical ideas are closely connected 
with methods for inference from point processes, e.g. 
[13], though the models involved are so specialized that 
very little use has been made of standard methodology. 

The experimental data analysed in the paper are 
taken from experiments on glass-carbon hybrids, 
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reported previously by Bader and Pitkethly [11]. The 
material is a glass-epoxy composite into which tows of 
carbon fibre have been inserted. Typically there are 
seven carbon tows in each specimen, and different 
distances between tows have been used: 1.5, 1.0, 
0.5ram and touching. These specimens have been 
tested in a Instron machine and the positions and 
failure strains of individual breaks in the carbon tows 
have been noted. The result is a failure pattern of the 
form illustrated in Figs 1 to 3. We can see at once that, 
when the carbon tows are only 0.5 mm apart, failure 
tends to occur across the material, whereas in the 
1.5 mm case the pattern of failures in the different tows 
shows no obvious correlation. The touching case (not 
shown) exhibits straight breaks across the material. It 
may be inferred that, in the touching case, there is a 
high degree of stress overload, whereas in the 1.5 mm 
case the degree of stress overload between carbon tows 
is small if there is any at all. The question is how to 
quantify such observations. 

We propose in this paper a new method of statistical 
analysis by which it is possible to make inferences 
about the magnitudes of the stress concentration 
factors. The method is based on the principle of 
maximum likelihood, and requires detailed computa- 
tions of individual sequences of fibre failures. For 
this reason it is highly computationally intensive. 
The method yields numerical estimates of several 
parameters describing the pattern of stress concentra- 
tions, but there is considerable uncertainty about 
these parameter estimates as reflected in the con- 
fidence intervals derived. Nevertheless, the method 
allows us to evaluate the differences among stress 
concentration patterns at different fibre spacings, 
and to make some inferences about the lengthwise 
distribution of stress concentrations in the neighbour- 
hood of a failed fibre. 
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Figure 1 Patterns of  breaks in tows with 
0.5 m m  spacing. 
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2. Statistical models for single-fibre 
strength 

The long established Weibull model for single-fibre 
strength, introduced by Weibull [14], rests on the 
assumption that failure is due to flaws which occur 
independently and randomly along the length of the 
fibre. The two-parameter Weibull distribution gives 
the survivor function, i.e. the probability that a fibre 
survives stress x, as 

Fo(x) = exp [ - a ( x / x , )  w] = exp [ - ( x / x ~ )  w] 

where a is the length of the fibre, x~ the characteristic 
stress of  the fibre at length I, Xa = Xl a (-  l/w) the charac- 
teristic stress at length a, and w is the Weibull shape 
parameter. This distribution is commonly deduced 
from the "weakest-link" concept, i.e. the assertion 
that a fibre is only as strong as its weakest portion. 
Long fibres must be weaker than short fibres because 
in a long fibre the probability of  encountering a flaw 
is greater than in a short fibre. 

Suppose a fibre of  length a consists of n segments of  
length d. Then the probability that the fibre survives 
stress x must equal the probability that all the segments 
survive stress x. I f  all segments can be regarded as 
independent then 

Po(x) = ( : . (x ) )" .  

The wide popularity o f the  Weibull distribution arises 

from the fact that it is consistent with this relation, 
and is a simple two-parameter function which is found 
to be consistent with strength data for a wide variety 
of  materials. Although other forms of  distribution 
have been considered, including the three-parameter 
Weibull and various bimodal forms, only the standard 
Weibull distribution will be considered in this paper. 

Suppose now that a fibre of  length l is known to fail 
at some point between stress x and the higher stress y. 
The probability of  this event is 

prob(survives x) - prob(survives y) 

= : , ( x )  - P,(y) 
= F , ( y )  - F~(x) w h e r e F =  1 - F. 

In the limiting case y ~ x, this reduces to ft(x) dx 
where f ( x )  = d F t ( x ) / d x  is the probability density 
function and dx = y - x. 

Now suppose a fibre fails whilst under the influence 
of transferred load due to the failure of  adjacent fibres. 
This enhancement of  effective load may be reflected in 
the application of a stress concentration factor k. 
When the applied stress is x the fibre experiences stress 
k x .  As failures around a fibre progress, this stress 
concentration factor will increase from its initial value 
of 1. 

Suppose it is observed that a fibre, currently surviv- 
ing stress k x ,  fails when the stress concentration factor 
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Figure 2 Patterns of  breaks in tows with 
1.0 man spacing. 
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is increased from k to k ~ . We do not know the exact 
strength of the fibre, but only that it lies between kx 
and k - x .  The probability of this event is 

Ft(k-x)  - Ft(kx) 

Suppose, in contrast, that the same fibre survives 
under the increase of stress concentration factor from 
k to k-  but, as the stress on the system is gradually 
increased from x, it fails at a stress (on system) y. The 
probability of this outcome may be represented as 

k-.~ (k - y) dy 

where the factor k" in front reflects the fact that 
in increment of dy in system stress results in an 
increment k ~ dy in fibre stress. 

Such calculations underlie the principle of the 
method: we are able to calculate probabilities of 
observed patterns of failed and unfailed fibres, as a 
function of unknown stress concentration parameters. 
The method of maximum likelihood then permits us 
to make inferences about those parameters. 

This section is concluded with a brief outline 
of the method of maximum likelihood, which is 
by far the most widely used method for fitting complex 
statistical models. 

Suppose observed data x~, x2, . . . ,  x,, can be 
thought of as realizations of a set of random variables 
X~, X2, . . . ,  Xn, whose probability distributions are 
known except for a finite number of  unknown par- 
ameters. There may be "censored" data, for example, 
in the case of a set of fibres, if fibre i did not fail within 
the duration of the experiment then xi may represent 
the maximum stress which the fibre is known to have 
survived. The likelihood function is defined to be the 

joint probability of the observed data, being expressed 
as a function of  the unknown parameters. The maxi- 
mum likelihood estimators are then those values of the 
parameters which maximize the likelihood function. 
Note that the whole procedure depends on the assumed 
parametric model being correct, and it is usual to 
combine the method with checks on the correctness of 
that model. 

The likelihood function may be represented as 
L(O; x), where 0 is a vector of unknown parameters 
and x is the data. In most complex models, the 
estimate 0 which maximizes L(O; x) must be obtained 
numerically, therefore requiring a suitable algorithm 
for numerical optimization. The matrix of second- 
order derivatives of - l o g  L, evaluated at the maxi- 
mum likelihood estimate 0, is termed the observed 
information matrix. Its inverse is an approximation 
to the variance-covariance matrix of the parameter 
estimates. All these concepts are treated in detail in 
standard texts on statistical methods. Watson and 
Smith [15] have several specific examples of maximum 
likelihood being applied to fit extensions of the 
standard Weibull model. 

For the analysis proposed here, the observed data 
consist of the positions of all breaks of individual 
carbon tows within the glass-epoxy matrix, together 
with the stresses at which the individual breaks 
occurred. The unknown parameters may consist of the 
Weibull scale and shape parameters of the individual 
tows, and the parameter F governing the stress con- 
centration factors. The likelihood function then 
involves calculating the probability of the observed 
outcome as a function of these unknown parameters. 
These calculations are sufficiently complex that 
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Figure 3 Patterns of  breaks in tows with 
1.5 m m  spacing. 
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considerable computer time is involved merely in 
evaluating the likelihood function, which then has to 
be maximized with respect to the unknown param- 
eters. Consequently, the maximization itself is a some- 
what ad  hoc  process. 

3. Models  for f ibrous composites 
Many of the theoretical models for fibrous com- 
posites, e.g. those studied by Harlow and Phoenix 
[2-5], are concerned with fibres arranged in a linear 
equally spaced array. The load on any unfailed fibre 
depends on how many failed fibres are adjacent to it. 
If this number is r then the load concentration factor 
k is given by 

k = 1 + g(r)  

The function g(r)  may take many forms. In the papers 
of Harlow and Phoenix, it was assumed that g( r )  = 
r /2 ,  corresponding to the assumption that all load on 
a group of  consecutive failed fibres is transferred to 
the two nearest neighbours. It is recognized, however, 
that this represents an extreme situation. The analysis 
to follow is based on the glass-carbon hybrid experi- 
ments described above, in which the "fibres" consisted 
of carbon-fibre tows embedded within a glass-epoxy 
matrix material. Following Bader and Pitkethly [11], 
it is assumed that 

g(r)  = (r)I /Z/F 

where F is a parameter, termed the load-sharing 
factor, which reflects the degree to which the load of 
a failed fibre has been transferred to other fibres. The 
parameter Fis  expected to increase with the inter-fibre 
distance, being effectively infinite if this distance 

exceeds four to five tow diameters. This reflects the 
notion that, at such a wide separation between tows, 
all the excess load is absorbed by the glass-epoxy 
matrix and there is no load transfer between tows. 

It is accepted that in practice all sharing fibres do 
not bear an equal load increment, and that the actual 
stress concentrations are not as localized as the model 
implies. However, the simplified model is considered 
to represent the most essential features of the situation 
and makes the following calculations possible. 

In accordance with the "chain of bundles models" 
[2-5], a set of N parallel fibres (a bundle) is considered 
as a set of m independent sub-bundles length d. So 
m d  = l and d is often referred to as the ineffective 
length. Fig. 4 illustrates the model. 

With data for the failures recorded in such a bundle, 
a contribution to the likelihood function, Li say, may 
be calculated for the ith sub-bundle. The overall likeli- 
hood function is obtained by multiplying together the 
contributions from the sub-bundles. 

As an example, suppose a sub-bundle provides the 
following data: 

Fibre 1 2 3 4 5 6 7 

Status 0 1 0 0 1 1 0 

Failure xl x2 x2 x3 
stress 

Here  the fibre "status" is 0 if failed, 1 if unfailed. The 
failure stresses represent the stress on the bundle when 
failure occurred, and it is assumed that the maximum 
stress at which the remaining fibres survived is known, 
s a y  X M . 

Under the given load-sharing rule, appropriate 
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Figure 4 Chain-of-bundles model. 

load-scaling factors may be calculated for each fibre, 
whether it be for the point of  failure, an interval in 
which failure occurred, or when the fibre survived the 
final stress. The joint probability of  this set of  out- 
comes is proport ional  to 

k , f ( k  I x ,  )~P(k 2 x M ) [ . . .]P(k5 XM )F(k6XM ) kT f (k7  x 3 ) 

where we write f a n d  F in place o f f / a n d  Fa, respect- 
ively, and P = 1 - F. Here kl, �9 . . , k7 represent the 
stress concentration factors on fibres 1 . . . .  , 7  in the 
configuration illustrated. The term denoted [ . . . ]  
refers to the probability density for the event of  two 
adjacent fibres apparently failing simultaneously at 
the same stress. This phenomenon is discussed next. 

Suppose a group of n fibres is observed to have 
failed together at stress x. It is assumed that failure 
was initiated by just one of the group, and that the 
others followed as a result of  the increased load placed 
upon them. For  n = 2 there are only two possibilities: 
either fibre 1 was the initiator, or fibre 2 was. So the 
probability density for this event is 

prob(1 then 2) + prob(2 then 1). 

The  order of  failure will affect the load concentration 
factors, at failure or over an interval during which 
failure occurred. The probability density above will 
take the form 

k , f ( k t x )  [ F ( k 2 - x )  - F (kzx ) ]  + k z f ( k 2 x )  

x [ F ( k , ' x )  - F(kx )] .  

Here k I and k2 are the initial stress concentration 
factors on fibres 1 and 2, k~ ~ is the stress concentra- 
tion factor on fibre l after fibre 2 has failed, and k2 ~ 
is the stress concentration factor on fibre 2 after fibre 
1 has failed. For n = 3 the possible sequences of  
failure are more numerous, and further introduces the 
situation where a failure may directly cause more than 
one other failure. 

e.g. X X X 1 2 3 X 

where 1, 2, 3 denote the subset of fibres which fail at 
a particular stress and the other fibres (denoted X) 

may be either failed or not. One possible sequence of 
failure is that 2 fails under its initial load, 3 fails under 
the overload from 2, and finally 1 fails as a result of  the 
overload from 2 and 3. Another  possibility is that the 
fibres fail in the order 2, 1, 3; yet another is that 2 fails 

first and then both 3 and 1 fail under the overload 
from 2. These and all other possibilities must be com- 
puted separately, the resulting probability density 
being a sum over disjoint sequences of  failure. The 
probability density corresponding to each possible 
sequence will take the form 

k z f ( k 2 x )  [F(k3" x )  - F(k3x)]  [F(k, ~ x )  -- F (k ,  x)] 

but the values of  k 3 ~, k3,  k I - ,  k~ will vary according 
to the pattern of  failure. 

In general, if we let M i = the number of  different 
patterns of failure, starting with fibre i, ki = load 
concentration factor at failure for fibre i, k i ( in)  = 

load concentration factor on fibre j when it is known 
to have survived in failure pattern m, kj - (m) = load 
concentration factor on fibre j when it is known to 
have failed in failure pattern m, then the probability 
density for the simultaneous failure o fn  fibres at stress 
x is 

i=1  L m = l  i = l  
j#i 

For each set of  values of  the unknown parameters, 
the program calculates the sum of  such probability 
densities over all sequences of  failure consistent with 
the data. The resulting sum is L~, the contribution to 
the likelihood for sub-bundle i. 

The choice of  the ineffective length d is arbitrary. It 
is intended to represent the distance in the direction of 
the composite over which the stress concentrations 
occur. There is considerable uncertainity as to the true 
value, and also as to how much it might vary with 
stress, but it is assumed here to be constant and a 
number of  different values have been tried in the 
region of 5 to 10 fibre diameters as suggested by the 
early work of Rosen [16] and Zweben [17]. 

A guide to the choice of  d is that, on dividing a 
bundle into sub-bundles of  length d, it is desirable that 
each should have only one break per fibre, and breaks 
which might be related should be in the same sub- 
bundle, to support the independence notion. Clearly 
this latter condition cannot be guaranteed, and it must 
be borne in mind that the chain of bundles model is 
only an approximation. 

The likelihood function for the complete bundle is 
a product across sub-bundles, i.e. 

L I L 2 L 3 L 4  . . . .  , Lm 

but it is more convenient to use log likelihood 

~ logLi  = L s a y  

Here L is primarily being considered as a function of 

F a n d  d, but the Weibull parameters xl and w are also 
of interest. The strategy that has been adopted is to fix 
d and one or two of the other parameters and estimate 
the rest. 

4. E x p e r i m e n t a l  d e t a i l s  
The experimental data which we have analysed is 
taken from the unpublished work of Pitkethly [18]. 
The composite was formed from carbon fibre, glass 
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fibre and epoxy resin. The carbon fibre was taken from 
a spool o f  1000-filament tow of  Celion 1000. The fibre 
diameter is approximately 8/~m, and 1000 such 
fibres closely packed together to form a tow have a 
diameter of  approximately 0.3ram. The ensuing 
analysis treats the tow as though it were a single fibre 
of  this diameter. 

The glass fibre was an E-glass supplied in rovings of  
approximately 1750 and 3500 filaments, the fibres 
approximately 20#m diameter. The resin was for- 
mulated from a standard bisphenonol-A epoxy cured 
with nadic methyl anhydride with an amine accelerator. 

The hybrid test pieces were made by taking lengths 
of partially cured resin-impregnated carbon tows and 
incorporating them at different separations into sheets 
formed from unidirectional glass-fibre rovings. These 
were then impregnated with resin and cured. 

Test coupons were cut from the sheets, 100 mm long, 
2 m m  thick, and wide enough to contain seven carbon 
tows. Three different spacings were used (measured 
tow centre to two centre): 0.5, 1.0, and 1.5 ram. A sheet 
was prepared for each spacing and each produced five 
or six test pieces labelled randomly, A, B, C . . . . .  etc. 

The strain to failure of  the carbon fibre is approxi- 
mately 1% and that of  the glass fibre, 3%, so that on 
loading the carbon tows break first, the glass-epoxy 
"matrix" remaining intact. The glass-epoxy constrains 
the tows so that at a certain distance (d, effectively) 
away from the break, the full stress is restored and 
further breaks can be induced. It was possible to 
record the position and strain corresponding to each 
fracture of  the carbon ligaments, positions to the 
nearest millimetre up to strains between 1% and 2%. 
At higher strain there is a risk of  the glass fibre failing. 

The patterns of  breaks for the 0.5, 1.0 and 1.5 turn 
spacings are shown in Figs 1 to 3. At 0.5 mm, most of 
the breaks occur straight across the bundle, implying 
that a single break has resulted in the whole sub- 
bundle breaking. At 1.0 ram, the pattern of  breaks is 
much more random, though there are still some 
breaks which go all the way across the specimen. 
At 1.5 ram, the pattern of breaks seems completely 
random. We would expect these different patterns to 

be reflected in different values of  the load-sharing 
parameter  F. In the case of  touching tows (separation 
0), all the failures occurred straight across the whole 
specimen. 

Table I is included to give an indication of the 
numbers of  breaks in the specimens and the range of  
failure strains. 

5. Results of the stat ist ical  analysis 
The first set of  data to be analysed was the 1.5mm 
data. The three parameters to be estimated are w, x~ 
(or equivalently x~ for any given a) and F. Initially w 
and x[ are assumed known, based either on the results 
of previous experiments or on analyses of  initial 
failures (i.e. the first failure in each of the 100mm 
tows) in the current experiment. The estimation based 
on initial failures is, in effect, assuming that these are 
independent from fibre to fibre, an assumption that 
seems reasonable in the case of  the 1.5 mm spacings, 
but not for the other spacings in which the dependence 
between the fibres is more obvious. Later we shall 
consider joint estimation of x[ and F on the assump- 
tion that neither is known initially. The units of  
measurement for length are millimetres. 

Maximum likelihood estimates of  the Weibull 
parameters based on initial failures are ~ = 31.04, 
2m0 = 3.846GPa and hence 2~ = 4.461GPa. The 
value for 2100 exceeds the estimate 3.77 GPa quoted by 
Bader and Pitkethly [8] based on single-fibre tests, but 
is consistent with the value quoted in Pitkethly's thesis 
[18] for the present experiment. The difference would 
appear to be due to different samples of  material being 
used for the two experiments. Based on these Weibull 
estimates, we also estimate 22s = 4.35GPa, 24 = 
4.28GPa, and take these as Weibull characteristic 
values for analyses based on ineffective lengths d = 1, 
2.5 and 4ram. 

Next, the parameter  F was estimated assuming xj 
and w known as above. Maximization of the likeli- 
hood function yields a maximum likelihood estimate 
/~. A 95% confidence interval for F m a y  be formed of  
all values for which 2 log L(F) is within 3.84 of its 
maximum. This is derived from the chi-squared 

TAB LE I Classification of data sets by inter-tow distance, ranges of breaking strains and numbers of breaks 

Inter-tow Data set Maximum % Minimum % No. Breaks 
distance (ram) 

1.5 A 1.899 1.633 55 
B 1.936 1.697 67 
C 1.880 1.667 61 
D 1.859 1.606 72 
E 1.885 1.703 46 

1.0 A 1.804 1.506 85 
B 1.785 1.612 66 
C 1.782 1.547 91 
D 1.750 1.493 74 
E 1.752 1.605 56 

0.5 A 1.826 1.641 61 
B 1.843 1.660 68 
C 1.933 1.593 84 
D 1.836 1.695 43 
E 1.805 1.644 29 
F 1.850 1.576 48 
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T A B L E  II 

Data set P Confidence interval 

T A B L E  IV 

Data set P Confidence interval 

A > 1000 A 130 [72, 383] 
B 100 [49, ~ ]  B 149 [75, 433] 
C 85 [29, oo] C 24 [22, 27] 
D 46 [23, oo] D oo [74, oo] 
E 50 [25, oo] E 83 [43, 262] 

Combined 48 [42, 56] 

approximation to twice the log likelihood function, 
which is a standard method for forming approximate 
confidence intervals from the likelihood function. 

For d = 1, estimates based on the five specimens 
depicted in Fig. 1 were as shown in Table II. The very 
wide confidence intervals (upper limit infinity) reflect 
the fact that the information obtained from a single 
data set is not sufficient to determine F at all precisely, 
and the inclusion of F = oo in the confidence interval 
means simply that a hypothesis of  no stress overload 
is not rejected by the data. 

We can obtain more meaningful results, however, 
by combining the samples into a single likelihood 
function. Such a procedure implicitly assumes that the 
parameters being estimated are the same across all the 
samples, but in this case such an assumption seems 
reasonable because all the specimens were obtained 
from the same batch of fibre. Combining the five 
specimens yields a point estimate/~ = 100, confidence 
interval [51,460]. 

Similar calculations for d = 2.5, 4 yield/~ = 120, 
conf. int. [75, 270]; and F = 170, conf. int. [97, 520], 
respectively. In each of these cases, finite confidence 
intervals for F are obtained, but they are still very 
wide. This is, however, to be expected, because it is 
evident that the amount of dependence between the 
fibres is slight and precise estimates of F are unlikely 
to be achieved. The problem of reconciling the esti- 
mates from different values of  d raises separate issues, 
which will be discussed after the analysis of the data 
on 1.0 and 0.5 mm spacings. 

We turn now to the 1.0mm data. In this case, 
estimation of the Weibull parameters based on initial 
failure data is less reasonable, because the degree of 
dependence between the fibres is far higher. However, 
there were differences in the inherent strengths of the 
sheets from which the test coupons were made. In 
particular the 1.0mm spaced material was of lower 
strength than the others. The strains at which breaks 
started to occur were clearly lower than for the other 
test pieces, and at the start of  loading these would not 
be affected by load-sharing. Taking into consideration 
the apparent non-comparability of  the 1.0 and 1.5 mm 
data, it was decided at first to proceed as in the case 
of the 1.5ram data, i.e. by estimating the Weibull 
parameters from initial failures and then estimating F 
by our maximum likelihood procedure. 

T A B L E  I I I  

d x d 

4.12 
4.026 
3.996 
3.934 
3.905 

1.0 
2.0 
2.5 
4.0 
5.0 

1.0mm spacing, d - 2.0ram, w = 30, x d = 4.026. 

The 35 stresses gave parameter estimates ff = 
44.65, 2~00 = 3.53. The increase in w is accounted for by 
a degree of dependence which will tend to reduce the 
variance of fibre strengths. For the same reason a 
reduced estimate of x~00 would be expected but not by 
such a large amount in comparison with the earlier 
value 3.85. In view of this it was felt that 3.53 was the 
more representative value, but w was kept at 30 for 
consistency with earlier results. 

Using a characteristic stress marginally above 3.53 
for 100 mm gauge length yields a characteristic stress of 
4.12 for unit length fibres under weak-link scaling, 
taking w as 30. This, in turn, yields the following 
characteristic stresses for a variety of sub-bundle 
lengths as shown in Table IlI. For the moment, d is 
fixed at 2.0. 

The Table IV shows estimates of F for each data set 
and also for all data combined together. This latter case 
assumes that the parameters are the same for each 
specimen - a more questionable assumption in this 
case because there is evidence that specimen C has 
smaller F than the others. This might be anticipated, 
because it is evident from Fig. 2 that set C has a greater 
degree of adjacency in its breaks than the other sets. For 
set D, the likelihood is increasing all the way to infinity 
and so we obta in /"  = oo as the maximum likelihood 
estimate. 

Similar calculations for d = 1.0, 2.5, 4 yield: _F = 80 
conf. int. [57, 122]; P = 115, conf. int. [85, 175]; P = 
67, conf. int. [58, 78]; respectively, where in this case 
only the combined results have been given. 

So far, the estimation problem has been treated as 
one of estimating F under the assumption that both x~ 
and w are known. A difficulty with the 1.0 mm data, 
however, was the initial estimation of xj, which either 
required using data from other experiments or making 
a Weibull analysis based on initial failures. The first 
approach is not adequate because of the very clear 
evidence of noncomparability between the specimens at 
different spacings, and the second approach is limited 
by the assumption that initial failures in the distinct 
fibres are independent. 

An alternative approach is to estimate all three 
parameters (w, xj and F)  by a three-parameter maxi- 
mization of the likelihood function based on all the 
breaks in the 1.00 mm specimens. This is limited by 
computational considerations, the difficulty of obtain- 
ing more than a few realizations of the likelihood 
function preventing a full-scale optimization. 

The following compromise was adopted. Noting 
that the value o f F  seemed more dependent on xj  than 
w, the value w = 30 was fixed for consistency with 
results for other spacings, and the likelihood function 
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T A B L E  V 

.r,t F 

28 30 32 34 36 38 40 42 44 

4.00 725.9 
4.02 

4.04 679.6 678.9 
4.06 676.3 673.2 671.4 670.5 670.3 670.7 67t.4 
4.08 672.5 669.7 668.4 668.1 668.5 669.4 670.7 672.2 
4.10 674.5 671.9 671.0 671.2 672.2 673.8 675.6 677.7 
4.12 678.3 679.0 

1.00mm spacing, d = 2.0, w = 30. 

evaluated over a sparse grid of (xj, F)  values. The 
results given in Table V were obtained for the negative 
log likelihood. The minimum is 668.1 corresponding 
to the estimates /" = 36 and 2 d = 4.08 and hence 
2~ = 4.175. Thus/6 is somewhat lower and 2~ slightly 
higher than the estimates obtained earlier. An approxi- 
mately 95% confidence region may be defined as con- 
sisting of  all (F, xj) combinations with a negative log 
likelihood within 1.9 of the minimum, i.e. less than 
670.0 in Table V. This includes an appreciable range 
of F values (32 to 40) but allows much less variability 
in the xj-direction. 

The same procedure was repeated for different values 
of  d with the following point estimates (Table VI). 
These results are not satisfactory. The values of F 
do not vary in a consistent way (we would expect them 
to increase with d - see Section 6 below) and the 
estimated x~00 also depends on the assumed d whereas 
because this parameter is determined primarily by the 
initial breaks, we would expect it to be independent of  
d. Variations in the experimental conditions may be 
responsible for this - specimen C being different from 
the rest, and the whole set of  test pieces being weaker 
than the others used in the experiment. 

Now we turn to the data with 0.5 mm spacing. An 
initial failure analysis was not appropriate in this case 
as the majority of breaks are likely to be dependent 
on others. Inspection of  the minimum breaking strains 
suggested that the characteristics of these test pieces 
were more in keeping with the general case than were 
the 1.0mm samples. Therefore, a first analysis was 
performed in which the Weibull parameters were 
assumed the same as for the 1.5mm data, F alone 
being estimated. This led to the results given in 
Table VII. In this case the results seem much more 
satisfactory in terms of obtaining estimates of F 
which are Consistent across different data sets, and 
with relatively narrow confidence intervals. In this 
case, of course, there is much higher dependence in the 
data, so it is not surprising that we are able to estimate 
the structure of  that dependence more reliably than in 
the previous two cases. 

T A B L E  VI 

d F 2~, 2100 

1.0 80 4.12 3.53 
2.0 36 4.08 3.58 
2.5 120 3.99 3.53 
4.0 46 3.995 3.59 
5.0 150 3.88 3.51 

As an example of the joint estimation of  xa and F, 
some values of the negative log likelihood are given in 
Table VIII. The 95% confidence region consists of all 
(F, xa) combinations with negative log likelihood 
within 1.9 of the minimum, i.e. everything within the 
range (767.0, 768.9). Combined estimates for various 
values of  d are given in Table IX. In this case a very 
satisfactory set of results is obtained, with Pincreasing 
gradually with d (as is to be expected) and the values 
of 21 consistent both with each other and the earlier 
value 4.46. 

6. Discussion 
The purpose of this analysis is two-fold. First, it 
provides an indirect means of determining the stress 
concentration factors, which are necessary "input" to 
statistical theories of composite strength as in Batdorf  
[8] and Smith et al. [10]. Secondly, by modelling the 
whole failure process rather than just the final strength 
of  the bundle, it provides a much firmer basis than 
previous studies for evaluating the success of the 
statistical theory for composites. The principal draw- 
backs of  the method, as it has been presented in this 
paper, are that the variability of estimates of F has 
been rather large (only in the 0.5mm case did we 
obtain fully satisfactory results), and the results are 
restricted to a rather narrow class of models. 

The principal method of computing stress con- 
centrations in the neighbourhood of  a reinforcing 
fibre is shear lag analysis, introduced by Cox [19] 
and Dow [20]. Hedgepeth [21] calculated stress con- 
centration factors k(r),  for the fibre nearest a group of  
r consecutive failed fibres in a linear array. By his 

T A B L E  VI I  

Data  set d = 2  d =  2.5 d = 4  d =  5 
x a = 4.38 x a = 4.35 x d = 4.28 x d = 4.25 

P P P P 
[conf. int.] [conf. int.] [conf. int.] [conf. int.] 

A 10 11 13 11 
[10, 11] [10, 11] [12, 14] [10, 11] 

B 14 14 17 16 
[13, 15l [13, t5] [16, 19] [15, 18] 

C 18 19 20 24 
[17, 19] [18, 21] [19, 22] [23, 27] 

D 14 15 17 17 
[13, 151 [14, 16] [16, 191 [16, 19] 

E 14 14 17 16 
[13, 161 [13, 151 [15, 201 [15, 191 

F 17 17 20 22 
[15, 201 [16, 181 [18, 221 [19, 251 
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T A B L E  V I I I  

x,~ F 

13 14 15 16 17 18 19 20 

4.26 
4.28 804.4 788.8 
4.30 775.4 
4.32 772.0 769.4 
4.34 794.2 767.0 769.6 
4.36 783.9 768.9 768.! 775.4 
4.38 776.8 769.7 774.5 
4.40 775.9 775.8 

783.5 784.7 
775.3 
773.7 782.4 
778 

0.50ram spacing, d = 2.5, w = 30, all samples combined. 

calculations, 

2j + 2 
k(r) j=l 2j + 11 1 

Note that this does not depend on the ratio of  fibre 
elastic modulus to matrix shear modulus, nor on fibre 
volume fraction. Hedgepeth 's  calculations, however, 
were based on the assumption that the matrix carries 
only shear stress and no tensile stress at all. In the 
present context, we are in effect treating the glass- 
epoxy compound as the matrix and the carbon tows as 
the fibres, but in this case Hedgepeth's  assumption is 
clearly not satisfied. An alternative analysis taking the 
matrix elastic strength into account was provided 
by Fukuda and Kawata  [22]. We shall make some 
comparisons with the Fukuda -Kawa ta  results after 
first considering another aspect, the effect of  the chain- 
of-bundles model and in particular the choice of  d. 

It is recognized that the chain of  bundles model, in 
which the material is assumed to be broken up into 
independent sections of  length d, is itself rather a 
crude approximation which effectively assumes that 
the stress concentrations around a break form a step 
function, being k = 1 + g(r) up to a distance d/2 
away from the break and thereafter 1. In reality the 
stress concentration factors in the adjacent fibres 
decay continuously from a maximum opposite the 
break. A suitable functional form of this relation is 
that the true stress concentration is 1 + a exp ( - c t )  
at a distance t from the break, i.e. an exponential 
decay of stress concentration. When the ineffective 
length d is assumed, this is being approximated by a 
step function as shown in Fig. 5. It therefore seems 
reasonable to see how closely the fitted values of F fit 
such an exponential stress-decay relation. 

A suitable criterion for k is obtained by equating the 
mean numbers of  failures in the fibre under the step- 
function and exponential-decay models. This leads to 
the equation 

= Jo [1 + a exp ( -c t ) ] "  dt 

y, 

i I 
I I 
I I 
I I 
I I 

I I 
I I 
I I 
1 I 

61 8 z t  

Figure 5 Exponential decay of stress concentration in a fibre 
adjacent to a broken fibre. 

6 = d/2 being the overload region. In the case r = 1, 
the value of F is then obtained from k = 1 + 1IF. 
Recall from Section 5 that, in the case of  the 0.5 mm 
data, we obtained F = 15, 16, 19 and 21 correspond- 
ing to d = 2, 2.5, 4 and 5, respectively. By trial and 
error we found a very good match with a = 0.0936, 
c = 0.825; exact results as shown (w = 30) in Table X. 
This shows that the variation of results with different 
values of  d (or g) corresponds very closely with what 
we would expect from an exponential decay model. 

A related question concerns the choice of  the best 
value of 6 for the chain-of-bundles analysis. Following 
the early work of Rosen [16] and Zweben and Rosen 
[23], a value of din  the neighbourhood of 5 to 10 fibre 
diameters is usually assumed, though the work of 
Fukuda and Kawata  [22] for a matrix bearing tensile 
stress suggests a value substantially larger. In our 
case the fibres are replaced by tows of  about  0.3 m m  
diameter, which suggests 6 in the range 0.75 to 
1.25 mm. 

One criterion suggested by the exponential decay 
model is to base the choice of  6 on the positions 
of  new breaks if they occur. The function [1 + 
a exp(--  ct)]" - 1 represents the mean density of  new 
breaks appearing as a result of  the stress overload. 
Hence the proport ion of new breaks appearing within 

of  the original break is 

{[1 + a exp ( - c t ) ] "  - 1} dt 

[{1 + a e x p ( - a ) } "  - 1J dt 

Evaluating this with a = 0.0936, c = 0.825 yields 
proportions 0.75, 0.81, 0.91, 0.95 corresponding to 
6 = 1, 1.25, 2, 2.5. Thus taking 6 = 2, for instance, 
has the (rough) interpretation that there is over a 90% 
chance that any new break as a result of the stress 
overload will occur within ~ of the old break. 

So far this discussion is restricted to the case when 
r, the number of  consecutive failed elements, is 1. 
Repeating all this for larger values of r does not yield 
such good results. For  r = 2, for instance, the best 
fit is obtained when a = 0.136, c = 1 (leading to 
F = 15.01, 16.02, 18.85, 20.62) and corresponding 

T A B L E  IX 

d t6 2a 2 I 

2.0 ! 5 4.37 4.47 
2.5 16 4.35 4.48 
4.0 19 4.26 4.46 
5.0 21 4.22 4.45 

T A B L E  X 

F 

1.0 14.95 
1.25 15.98 
2,0 19.02 
2.5 21.03 
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proportions (as in the previous paragraph) 0.86, 0.90, 
0.96, 0.98 - suggesting that the ineffective length for 
r = 2 is shorter than for r -- 1, contrary to what has 
been assumed in previous studies. The corresponding 
results for r = 3 are a = 0.17, c = 1.2 leading to 
F = 15.13, 16.11, 18.75, 20.34 at our four values of 6 
and proportions of 0.93, 0.96, 0.986, 0.993. It is some- 
what paradoxical that c is increasing with r and this 
may suggest some discrepancy in our analysis for 
r > l .  

It should also be possible to explain the variation 
of F with inter-tow distance in relation to existing 
theories on stress overload, though this is not so easy 
in view of the fact that we only obtained satisfactory 
results in the 0.5 mm case and the existing theory may 
not be directly applicable to the carbon-glass hybrid 
being considered. As mentioned above, Fukuda and 
Kawata [22] developed a theory of stress concen- 
trations in composites in which both fibre and matrix 
bear tensile load. Their results depend on both the 
ratio of elastic moduli for fibre and matrix, and the 
fibre volume fraction. In the present study, in which 
the "matrix" is represented by glass-epoxy composite, 
the ratio of elastic moduli is very nearly 3. The 
"volume fraction" is less well defined, because the 
carbon is surrounded by a considerable quantity of 
glass-epoxy, the true volume fraction of carbon is 
near 0, but within the plane where most of the action 
takes place the carbon tows are juxtaposed with glass- 
epoxy sections in a "phase-ratio" of about 0.25:h 
where h is the separation (centre to centre) between 
tows. Referring to Fig. 8 in Fukuda and Kawata [22] 
for the case r = 1 and taking the ratio of carbon-glass 
moduli as 3, it appears that the maximum stress ratio 
1 + a is about 1.1 for volume fraction 50% and 1.04 
for volume fraction 25%, corresponding to inter-tow 
distances 0.5 and 1.0mm. Noting that we found 
a = 0.0936 above, this seems consistent. Our results 
for 1.0 mm spacing are so variable as not to permit the 
detailed analysis made for the 0.5 mm case, but if we 
assume a = 0.4 and keep the same value of  c (0.825) 
then we obtain F = 30, 36, 39, 48 and 55 for the five 
values of d considered in Section 5. The second and 
fourth of these values are very close to those quoted in 
Section 5, but the others are quite different. For the 
1.5mm data, taking a = 0.013, c = 0.825 yields 
F = 94, 122, 154 for d --- 1, 2.5, 4, compared with the 
estimated values 100, 120, 170 in Section 5. Here we 
have assumed the same value of c (though these results 
are not very sensitive to c) and the value of a is 
somewhat lower than the value of about 0.02 suggested 
by the figure of Fukuda and Kawata - a discrepancy 
that may be due to the stresses being distributed over 
a larger volume of the glass-epoxy and hence the 
effective volume fraction being less than 17%. In 
subsequent papers, Fukuda and co-workers (see, 
e.g. Fukunaga et al. [23]) have made detailed com- 
putations of stress concentration factors in hybrid 
composites and it may be that their results would cast 
further Fight on these computations, but we have not 
attempted that here. 

In conclusion, the statistical analysis presented in 
this paper has the potential to provide new insight into 
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stress concentration factors and into the applicability 
of statistical models for composites. However, we 
obtained fully satisfactory results only in the case 
of the 0.5 mm data. With the 1.0mm data, there is 
evidence of experimental variability that may have 
made the results non-comparable with the other 
cases, while with the 1.5mm data the correlations 
between the different tows were so slight that there 
was inevitably huge uncertainty about the estimated 
value of F. Throughout  the paper we have restricted 
attention to a single statistical model, with F the only 
parameter describing the stress concentrations. This 
was dictated partly by computational considerations 
(difficulty in optimizing over more than one par- 
ameter), and partly by the available data, which would 
have made it difficult to estimate more parameters 
with a reasonable degree of precision. In principle, 
however, the method may be applied to a far wider 
class of models, and this is one aspect which suggests 
itself for further research. 
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